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Abstract

The purpose of this work is to develop a human-robot

interaction system that could be used as a sign language

interpreter. The paper presents the results of the ongoing

work, which aims to recognize sign language in real time.

The motivation behind this work lies in the need to differen-

tiate between similar signs that differ in non-manual com-

ponents present in any sign. To this end, we recorded 2000

videos of twenty frequently used signs in Kazakh-Russian

Sign Language (K-RSL), which have similar manual com-

ponents but differ in non-manual components (i.e. facial

expressions, eyebrow height, mouth, and head orientation).

We conducted a series of evaluations in order to investi-

gate whether non-manual components would improve sign’s

recognition accuracy. Among standard machine learning

approaches, Logistic Regression produced the best results,

73% of accuracy for dataset with 20 signs and 80.25% of

accuracy for dataset with 2 classes (statement vs question).

1. Introduction

Deaf communities around the world communicate via

sign languages, which uses gestures to express meaning and

intent, that include hand-shapes, arms and body, head po-

sition, facial expressions and lip-patterns [22]. Similar to

spoken languages, each country or region has its own sign

language of varying grammar and rules, leading to a few

hundreds of sign languages that exist today [3]. While au-

tomatic speech recognition has progressed to being com-

mercially available, automatic Sign Language Recognition

(SLR) is still in its infancy [7]. Currently, human signers

carry out all commercial translation services, who are re-
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quired to get training and to be experienced, thus are often

expensive for the majority in need [25].

With the latest advancements of deep learning research,

we envision that the ambitious goal of developing a com-

plete human-robot interaction system acting as a sign lan-

guage interpreter for the deaf could be achieved. The fo-

cus of the work presented in this paper is to implement a

vision-based approach to be deployed on a robot such as a

humanoid robot Pepper for effective automatic SLR.

However, there is a lack of sign language data for deep

learning research. To date, only a handful of sign languages

have their corpora [4, 6, 10, 16] for the use by general popu-

lation, linguists and researchers in computer vision and ma-

chine learning. Similar to spoken languages, each country

or region has its own sign language of varying grammar and

rules, leading to a few hundreds of sign languages that ex-

ist today [3]. Unfortunately, there are no such corpora for

the majority of sign languages, which makes research on a

particular sign language a very difficult and resource con-

suming challenge.

Sign Language used in Kazakhstan is closely related to

Russian Sign Language (RSL) like many other sign lan-

guages within Commonwealth of Independent States (CIS).

The closest corpus within CIS area is the Novosibirsk State

University of Technology RSL Corpus [5]. However it has

been created as a linguistic corpus for studying previously

unexplored fragments of RSL, thus it is inappropriate for

machine learning. The creation of the first K-RSL corpus

will change the situation, and it can be used within CIS and

beyond.

In addition, many approaches focus on the signer’s hands

only. However, signers use other articulators: facial expres-

sions, and head and body position and movement to con-

vey linguistic information, too [20]. It has been shown that

non-manual markers function at different levels in sign lan-

guages. On the lexical level, signs which are manually iden-
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Figure 1. Examples of each sign from our data set: A) “ what for” statement, B) “what for” question, C) “where (direction)” statement, D)

“where (direction)” question, E) “which” statement, F) “which” question, G) “where (location)” statement, H) “where (location)” question,

I) “which-2” statement, J) “which-2” question, K) “what” statement, L) “what” question, M) “how” statement , N) “how” question

tical can be distinguished by facial expression or specifi-

cally by mouthing (silent articulation of a word from a spo-

ken language) [8]. On the morphological level, facial ex-

pressions and mouth patterns are used to convey adjectival

and adverbial information (e.g. indicate size of objects or

aspectual properties of events) [8]. Non-manual markers are

especially important on the level of sentence and beyond.

Specifically, negation in many sign languages is expressed

by head movements [28], and questions are distinguished

from statements by eyebrow and head position almost uni-

versally [29].

Given the important role of non-manual markers, in this

paper we test whether including non-manual features im-

proves recognition accuracy of signs. We focus on a specific

case where two types of non-manual markers play a role,

namely question signs in K-RSL. Similar to question words

in many spoken languages, question signs in K-RSL can be

used not only in questions (Who came?) but also in state-

ments (I know who came). Thus, each question sign can

occur either with non-manual question marking (eyebrow

raise, sideward or backward head tilt), or without it. In ad-

dition, question signs are usually accompanied by mouthing

of the corresponding Russian/Kazakh word (e.g. kto/kim

for ‘who’, and chto/ne for ‘what’). While question signs

are also distinguished from each other by manual features,

mouthing provides extra information, which can be used in

recognition. Thus, the two types of non-manual markers

(eyebrow and head position vs. mouthing) can play a differ-

ent role in recognition: the former can be used to distinguish

statements from questions, and the latter can be used to help

distinguish different question signs from each other. To this

end, we hypothesize that addition of non-manual markers

will improve recognition accuracy.

2. Related Work

Researchers dealing with monocular cameras consider

manual and non-manual features separately. Manual fea-

tures are features related to hands (e.g. hand configura-

tion and motion trajectory of hands), while non-manual fea-

tures are those features that do not involve hands and in-

clude facial expressions, lip patterns, head and body pos-

ture, gaze estimation. For example, the state-of-the-art per-

formance was achieved by employing hybrid CNN-HMM

approach where Language Model was used to maximize

models in HMM [15]. They achieved a WER (Word Er-

ror Rate) in continuous sign language recognition of 30%

for RWTH-PHOENIX-Weather 2012, 32.5% for RWTH-

PHOENIX-Weather 2014 and 7.4% for SIGNUM. Cue et

al. (2017) utilized Recurrent-CNN for spatio-temporal fea-

ture extraction and sequence learning. They applied their

approach to a continuous sign language recognition bench-

mark, achieving a WER of 38.7% on RWTH-PHOENIX-

Weather 2014 dataset [9]. Koller et al. (2018) [15] provides

an overview of the latest results in SLR using deep learning

methods. However, their approach exploits only a single

cropped hand of the signer and since it still achieves the

state-of-the-art, it is hypothesized that additional modalities

such as non-manual components (facial expression, eye-

brow height, mouth, head orientation, and upper body ori-

entation) might increase this performance.

Non-manual features bring a significant meaning to sign

language recognition as these parameters are essential for

recognition of sign language, since they carry grammatical

and prosodic information. Despite that facial features have

been crucial for humans to grasp and understand sign lan-

guage quite for a long time, the examination of their signifi-

cance for automatic SLR was proved only in 2008 by Ulrich

von Agris et al. [26].
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Figure 2. OpenPose resulting video screenshots: A) ’for what’ statement, only manual features, B) ’for what’ question, only manual

features, C) ’for what’ question, with manual and non-manual features

Antonakos et al. (2015) [2] presented an overview of

non-manual parameters employment for SLR. Lip patterns

represent the most distinctive non-manual parameter. They

solve ambiguities between signs, specify expressions and

provide information redundant to gesturing to support dif-

ferentiation of similar signs. In addition to lip patterns,

the head pose supports the semantics of a sign language.

Questions, affirmations, denials, and conditional clauses are

communicated, e.g., with the help of the signers head pose.

Antonakos et al. (2015) [2] conclude that limited number of

works focused on employing non-manual features in SLR.

Freitas et al. (2017) [11] developed models for recogni-

tion of Grammatical Facial Expressions in Libras Sign Lan-

guage. They have used Multi-layer Perceptron and achieved

F-scores over 80% for most of their experiments. One of the

interesting findings of their work was that classification ac-

curacy can vary depending on how empathetic the signer

is.

Liu et al. [19] developed a system that automatically de-

tected non-manual grammatical markers. They were able

to increase recognition rate by adding high-level facial fea-

tures, which are based on events such as head shake and

nod, raised or lowered eyebrows. Low-level features are

based on facial geometry and head pose. Combining both

low-level and high-level features for recognition showed

significant improvement in accuracy performance.

Kumar et al. [18] attempted to recognize selected sign

language gestures using only non-manual features. For this

needs they developed new face model with 54 landmark

points. Active Appearance Model was used for extract-

ing features of facial expressions and recognized signs us-

ing Hidden Conditional Random Field. They have used

RWTH-BOSTON-50 dataset for experiments and their pro-

posed model achieved 80% recognition rate.

In contrast, Yang and Lee [27] proposed a new method

which applied non-manual features, extracted from facial

expressions, in addition to manual features. They used non-

manual features in cases of uncertainty in decisions made

based on manual features only. Facial feature points were

extracted using Active Appearance Model and then Support

Vector Machines was applied for recognition of non-manual

features. Highest recognition rate of 84% was achieved by

their method when both manual and non-manual features

were combined, which was 4% higher compared to the case

when only manual features were used.

In contrast to the latest related work in SLR this paper

aims to include more modalities than just the hands’ fea-

tures for real-time performance within human-robot inter-

action. The motivation behind this work lies in the need to

differentiate between similar signs that only differ in non-

manual components.

3. Methodology

3.1. Data collection

To explore the above stated hypotheses, we have col-

lected a relatively small dataset of K-RSL similar to pre-

viously collected data [1, 14].

To explore current research questions, we recorded three

professional sign language interpreters. Two of them are

employed as news interpreters at the national television.

Each signer can be considered as a native signer as they

all have at least one deaf parent. They have been asked to

sign 200 phrases, which contain 10 signs both used in state-

ments and questions. Each phrase was repeated ten times in

a row. The setup had a green background and a LOGITECH

C920 HD PRO WEBCAM. The shooting was performed in

an office space without professional lighting sources.
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We selected ten words and composed twenty phrases

with each word (ten statements and ten questions): ‘what

for’, ‘who’, ‘which, ‘which-2’, ‘when’, ‘where (direction)’,

‘where (location)’, ‘why’, ‘how’, and also ‘how much’.We

distinguish them to twenty classes (as ten words have a

pair in both statement and question form). The reason for

choosing these particular signs is that they carry different

prosodic information as can be used in questions and state-

ments. Also, they are similar but different in manual artic-

ulation. Figure 1 provides examples of 14 sign pairs from

our data set.

3.2. OpenPose

We utilized OpenPose in order to extract the keypoints of

the person in the videos. OpenPose is the real-time multi-

person keypoint detection library for body, face, hands, and

foot estimation provided by Carnegie Mellon University

[23]. It detects 2D information of 25 keypoints (joints) in

a body and feet, 2x21 keypoints in both hands and 70 key-

points in a face. It also provides a 3D single-person key-

point detection in real time. OpenPose provides the val-

ues for each keyframe as an output in JSON format. Since

dataset we use consists of RGB videos, we only consider 2D

keypoints in this work. Figure 2 presents OpenPose result-

ing video screenshots with keypoints for manual and non-

manual features.

The reason for choosing OpenPose instead of other im-

age processing techniques for extracting manual and non-

manual features is in its high accuracy and reliability, since

we aim for the real-time performance in real-world condi-

tion to be used as a complete human-robot interaction sys-

tem.

3.3. Classification

Classification was performed utilizing standard machine

learning approaches such as Support Vector Machines, Lo-

gistic Regression, Random Forest, Random Tree, BayesNet

and others. To this end, the dataset was converted to Arff

format - the format used by the Weka machine learning tool

[12], and CSV (comma separated values) formats.

Logistic Regression provided the best accuracy and thus

was selected to be integrated into all experiments. We used

scikit-learn library for Python with default parameters as the

main classification method for the experiments presented

in this paper. The classifier was trained on sequences of

keyframes extracted from the OpenPose. The sequence of

keyframes holds the frames of each sign video. Consequen-

tially, one datapoint holds concatenated keypoints of each

video and has a maximum of 30 frames * 274 keyframes

= 8220 manual plus non-manual features for one datapoint

and 30 frames * 84 keyframes = 2520 only manual features

for each of 20 classes.

3.4. Human­Robot Interaction

We implemented a simple scenario where a humanoid

robot Pepper would encourage people to repeat the signs

displayed on the screen. As the user performed each sign

in front of the camera, OpenPose extracted the features that

were tested on corresponding Logistic Regression model to

output the predicted sign in real-time for the robot to pro-

nounce it with Aldebaran Robotics NaoQi’s text-to-speech

engine. To this end, we used Robotic Operating System

(ROS) for integration between camera’s feed and OpenPose

engine. The system’s hardware and software components

are presented in Figure 3.

Figure 3. System’s hardware and software components

4. Experiments

We conducted a series of experiments in order to in-

vestigate whether non-manual features would improve the

recognition accuracy for 20 signs. The first experiment

used a k-fold cross-validation on the collected dataset of

native singers (three people) where samples were divided

into 2 classes (statement and questions). The second exper-

iment used the same dataset but samples were divided into

20 classes (10 signs as statement and questions). The third

experiment used the same dataset with 20 classes to com-

pare and contrast the accuracy in terms of its improvement

with different combinations of non-manual components.
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Figure 4. k-fold cross-validation experiment on statement-question dataset. Confusion matrix for 2 classes (statement vs question) with

manual only features (left). Accuracy is 77.5%. Confusion matrix for 2 classes (statement vs question) with both manual and non-manual

features (right). Accuracy is 80.25%.

Figure 5. k-fold cross-validation experiment on distinct signs dataset. Confusion matrix for 20 signs with manual only features (left).

Accuracy is 66.75%. Confusion matrix for 20 signs with both manual and non-manual features (right). Accuracy is 73%.

4.1. A case of two classes

In order to experiment with all videos the k-fold cross

validation method was applied to the classification. The

whole dataset was divided into training and testing sets

(80/20 split, 1600 samples for training and 400 samples for

testing). Choosing k equal to 5 (80 and 20 split), the train-

ing and validation were performed for each fold. Figures 4

(left) and 4 (right) show the confusion matrices of the ob-

tained results for the first experiment. Mean averages are

81% and 86% for validation accuracy on manual-only and

both manual and non-manual features respectively. Testing

accuracy is 77.5% and 80.25% on manual-only and both

manual and non-manual features respectively. Qualitative

examination of the confusions in non-manual and manual

confusion matrix (Figure 4 (right) shows that by adding

non-manual features it was possible to correctly identify

11 samples as questions, that were classified as statements

when using only manual features. We see that non-manual

markers can be used to help distinguish different signs from

each other when they are used in statement vs questions.

4.2. A case of twenty classes

Figures 5 (left) and 5 (right) show the confusion ma-

trices of the obtained results for the second experiment.

Mean averages are 93.9% and 94.9% for validation accu-

racy on manual-only and both manual and non-manual fea-
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Figure 6. k-fold cross-validation experiment on different combinations of non-manual features. Confusion matrix for 20 signs with manual

and non-manual (faceline, eyebrows, eyes, mouth) features (left). Accuracy is 73.75%. Confusion matrix for 20 signs with manual and

non-manual (eyebrows, eyes, mouth) features (right). Accuracy is 72.75%.

Figure 7. k-fold cross-validation experiment on different combinations of non-manual features. Confusion matrix for 20 signs with manual

and non-manual (only eyebrows and eyes) features (left). Accuracy is 67.25%. Confusion matrix for 20 signs with manual and non-manual

(only mouth) features (right). Accuracy is 73.5%.

tures respectively. Testing accuracies are 66.75% and 73%

on manual-only and both manual and non-manual features

respectively.

Qualitative examination of the top confusions in manual-

only confusion matrix (Figure 5 (left) highlight confused

pairs such as “Which2” (statement) and “Which2 Q” (ques-

tion) with 27.5% confusion, “Which” (statement) and

“Which Q” (question) with 57.5% confusion, “How” (state-

ment) and “How Q” (question) with 75% confusion, “For

what” (statement) and “For what Q” (question) with 23%

confusion. Since these signs share the same hand configu-

rations and only the facial expression changes, it is expected

that manual-only features caused such an error. And as ex-

pected, non-manual features improved recognition accuracy

by 6% on average (from 66.75% accuracy to 73% accuracy)

mainly between these signs (“Which2” pair had a decrease

to 10% confusion, “Which” pair decreased to 20% confu-

sion, “How” pair decreases its confusion to 55%).

4.3. A case of combining different modalities

Figures 6 and 7 show the confusion matrices of the

obtained results for the third experiment. In this experi-

ment different combinations of non-manual markers (eye-

brow and head position vs. mouthing) were compared and
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their role in recognition was analyzed.

The lowest testing accuracy was 67.25% for combina-

tion of manual features and eyebrows keypoints. Eyebrows

without any other non-manual feature did not provide valu-

able information for recognition. Only when they are used

in combination with other features the accuracy was im-

proved. The highest testing accuracy was 73.75% for com-

bination of manual features and faceline, eyebrows, and

mouth keypoints. When only mouth keypoints were used in

combination with the manual features, the accuracy also in-

creased by 0.5% compared to the baseline of 73%. Thus, we

see that mouthing provides extra information, which can be

used in recognition, because signers usually articulate signs

while performing it. Eyebrows and head position provide

additional grammatical markers to differentiate statements

from questions.

5. Conclusion and Future Work

Automatic SLR poses many challenges since each sign

involves various manual and non-manual components and

varies from signer to signer. Since deep learning methods

require a lot of data and it is quite challenging to collect

the data from native signers, many datasets are not balanced

and have only limited vocabulary. We decided to investigate

whether improvement in recognition accuracy would be due

to the addition of non-manual features. Similarly to related

works by Freitas et al. [11], Yang and Lee [27] we saw an

improvement in 6% for the k-folded performance. Table 1

compares our results obtained from the experiments:

Table 1. Comparison of results

Method 5-fold 80/20 split

Manual only 93.9% 66.75%

Manual & Non-manual full 94.9% 73%

Manual & Face, eyebrows, mouth 88% 73.75%

Manual & Eyebrows, mouth 89% 72.75%

Manual & Only mouth 88% 73.5%

Manual & Only eyebrows 88% 67.25%

This aim of this paper was not in achieving the best ac-

curacy in the literature of automatic SLR, nor in utilizing

a large dataset of continuous signs for the prediction, but

rather to compare and contrast the accuracies in terms of

improvement when non-manual components are integrated

into the perception system. In addition, we deployed an

architecture of automatic SLR onto a humanoid robot in or-

der to conduct a real-world signer independent experiment

in real time. Future work will involve expanding the K-RSL

dataset and conducting a real-world experiment with native

signers and a robot.
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